

Finding Equation of Regression Line

Let's say, you have coordinates of four points:

X	2	4	6	8
Y	Y1	Y2	Y3	Y4

For y_1, y_2, y_3, y_4 assign any four positive numbers between 10 and 30. Make sure your set is different from already posted submissions.

Here are 6 steps you should to complete:

- 1) Compute x-mean $\langle x \rangle$ and y-mean $\langle y \rangle$.
- 2) Complete the table below:

x	y	$x - \langle x \rangle$	$y - \langle y \rangle$	$(x - \langle x \rangle)(y - \langle y \rangle)$	$(x - \langle x \rangle)^2$
2					
4					
6					
8					

- 3) Find Sum of column $(x - \langle x \rangle)(y - \langle y \rangle)$. This is S_{xy}
- 4) Find Sum of column $(x - \langle x \rangle)^2$ This is S_{xx}
- 5) Calculate $b_1 = S_{xy} / S_{xx}$ and $b_0 = \langle y \rangle - b_1 \langle x \rangle$
- 6) Write Equation of Regression Line in form: $y = b_0 + b_1 x$